

رابط قناتي على اليوتيوب: كيمياء الصف العاشر | نظرية بور لذرة الهيدروجين الجزء الأول | فصل أول | الأستاذ عبدالرحمن عقل (youtube.com)

رابط مجوعة الواتس آب لطلاب الأستاذ عبدالرحمن عقل:

https://chat.whatsapp.com/C8Y1tOZI0xc3XBIj3OqHwK

كيمياء العاشر

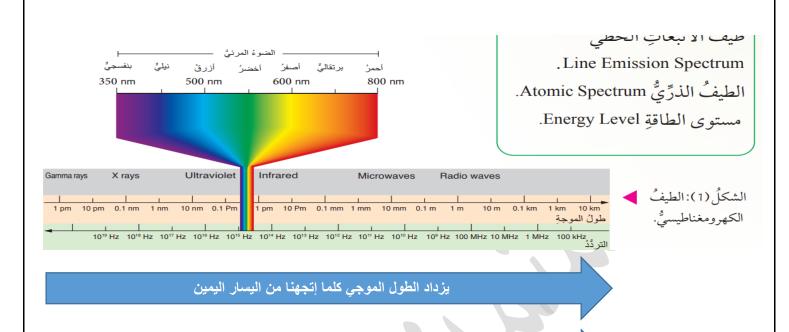
الأستاذ عبدالرحمن عقل

العلامة الكاملة بإنتظارك

0781798250

0781798250	الأستاذ عبدالرحمن عقل
1, 500	
مياء	المتميز بالكي

الدرس الأول نظرية بور لذرة الهيدروجين


قبل البدء بدراسة نظرية بور لذرة الهيدروجين يجب علينا معرفة بعض الأمور عن الضوء و خصائصة وذلك لأن الضوء هو مصدر المعلومات عن الذرة.

• لماذا يعد الضوء مصدر معلومات عن الذرة ؟

بسبب إنبعاث الضوء من بعض العناصر عن تسخينها .

الطيف الكهرومغناطيسي: هو الضوء في جميع أطوالة المغناطيسية و تردداته

- 1. ينتشر الضوء في الفراغ على شكل أمواج و بسرعة ثابتة
- 2. يمكن وصف أمواج الضوء عن طريق أطوالها الموجية و ترددها
 - 3. تتفاوت الأطوال الموجية في طولها و ترددها و طاقتها
- 4. تتناسب الأطوال الموجية تناسباً عكسيا مع الطاقة و التردد بينما تتناسب الطاقة طرديا مع التردد

تقل الطاقة و التردد كلما إتجهنا من اليسار اليمين

يوضح الشكل رقم 1 أنواع الأشعة

- 1- أشعة غاما (Gamma rays) و هي أكبر طاقة, أقل طول موجى
 - 2- الأشعة السينية (X rays)
 - 3- الأشعة فرق البنفسجية (Ultraviolet)
 - 4- الأشعة تحت الحمراء (Infrared)
 - 5- اشعة المايكروريف (Microwaves)
 - 6- أشعة الراديو (Radio waves) الأقل طاقة ,أكبر طول موجي
 - ✓ قارن بين الطول الموجى للأشعة تحت الحمراء و أشعة المايكروويف

الطول الموجى لأشعة المايكر وويف أكبر من الطول الموجى للأشعة تحت الحمراء

المتميز بالكيمياء

✓ قارن بين تردد أشعة جاما وأشعة المايكروويف

تردد أشعة غاما أكبر من تردد أشعة المايكروويف

ينقسم الطيف الكهرومغناطيسي الى الطيف المرئي و الطيف الغير مرئي و الجدول التالي يوضح الفروقات بين الطيفين

مثال على الطيف	الطول الموجي	نوع الطيف
ضوء الشمس	nm 800 – 350	الطيف المرئي
أمواج الراديو و التلفاز و أشعة المايكروويف	أكبر من 800 nm و أقل من 350 nm	الطيف الغير المرئي

الطيف المرئي

- ✓ الطيف المرئي يمكن أن يشاهد أو يتم تمييزة بالعين
- ✓ يظهر الطيف المرئي عند تحليل الضوء العادي من خلال منشور زجاجي على شكل حزمة من الأشعة الملونة المتتابعة دون ظهور حدود واضحة.
 - ✓ مثال على الطيف المرئي قوس المطر
 - ✓ يعرف الطيف المتصل أو المستمر بأنة الأشعة الملونة المتتابعة دون حدود واضحة

الطيف الغير المرئي

- ✓ لا يمكن رؤيتة بالعين
- ✔ يشمل جميع الأطوال الموجية التي يزيد طولها على 800 نانومتر و أقل عن 350 نانومتر

المتميز بالكيمياء

تم إكتشاف أن للضوء طبيعة مزدوجة (موجية – مادية) من خلال تجارب العالمان بلانك و آينشتاين. كما توصلا الى نتيجة مفادها أن الضوء ينبعث بترددات محددة تسمى الكم و تعرف ايضا بإسم الفوتونات. كل فوتون يحمل مقدارا محددا من الطاقة يتناسب طرديا مع ترددة و يعبر عن ذلك بعلاقة بلانك الاتية.

E = hv

حيث:

E: طاقةُ الفوتونِ وَتُقاسُ بالجول (J).

h: ثابتُ بلانك، ويساوي (J.s ³⁴ J.s).

٧: تردُّدُ الضَّوءِ وَيُقاسُ بالهيرتز (Hz).

أَثْبَتَتِ الدراساتُ الفيزيائيةُ أنَّ تردُّدَ الضوءِ يتناسبُ عكسيًّا معَ طولُ موجتهِ، وأنَّهُ يُمكِنُ التعبيرُ عنْ ذلكَ بالعلاقةِ الآتيةِ:

 $c = \lambda v$

حيث:

 \mathbb{C} : سرعةُ الضوءِ، وتساوي (\mathbb{C}^{8} m\s).

المع بأن ثابت بلانك \checkmark إحسب طاقة الفوتون الذي تردده $(3 imes 10^{15}~Hz)$ مع العلم بأن ثابت بلانك $(6.63 imes 10^{-34}~J.s)$

 $E = h \Upsilon$

 $E = 6.63 \times 10^{-34} J.s \times 3 \times 10^{15} Hz$

 $E = 19.89 \times 10^{-19} J$

رحسب طول موجة ضوء تردده $(2 + 10^{14} \, Hz)$ ثم حدد المنطقة التي يقع فيها هذا الضوء (الطيف المرئي أو الغير مرئي) مع العلم أن سرعة الضوء ((C)) قيمتها

$$(3 \times 10^8 \frac{m}{s})$$

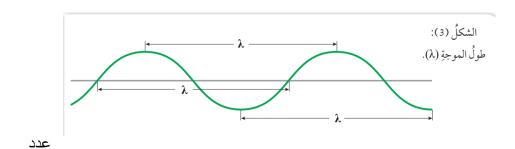
المطلوب هو الطول الموجي و لأن سرعة الضوء و قيمة التردد أعطيت بالسؤال نستخدم العلاقة التالية $\mathbf{C} = \mathbf{\lambda} \times \mathbf{v}$

$$3 \times 10^8 \frac{m}{s} = \lambda \times 4 \times 10^{14} \, Hz$$

$$\lambda = \frac{3 \times 10^8 \frac{m}{s}}{4 \times 10^{14} Hz}$$

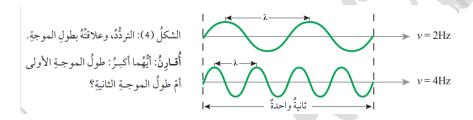
$$\lambda = 750 \text{ nm}$$

يقع هذا الضوء ضمن منطقة الأشعة المرئية


ملاحظة:

ان كل m يساوي 10⁻⁹ m

طريقة التحويل من m الى nm


$$1m \times \frac{10^{-9} nm}{1 m}$$

طول الموجة: هي المسافة بين قمتين متتاليين أو قاعين متتاليين كما بالشكل التالي

التردد: مي

الموجات التي تمر بنقطة في الثانية, و تقاس بوحدة Hz الهيرتز وتتناسب عكسيا مع الطول الموجي و طرديا مع الطاقة كما بالشكل التالي

نلاحظ في الموجة الثانية (الموجة العليا) بأن المسافة بين القمتين أكبر من المسافة بين القمتين في الموجة الأولى (التي بالأسفل) .

الطيف الدري: مجموعة الأمواج الضوئية التي تصدر عن ذرات العناصر, و يقع بعضها في منطقة الضوء المرئي, و بعضها الآخر في منطقة الضو الغير مرئي.

الذرات المثارة: هي ذرات العنصر التي تكتسب طاقة عند تسخينها فتصبح في حالة عدم إستقرار.

ملاحظة:

إن الذرات المثارة لا تعود إلى حالة الإستقرار إلا عند فقدها الطاقة على شكل أمواج ضوئية

الطيف الخطي : مجموعة الأطوال الموجية التي تظهر في صورة مجموعة من الألوان المتباعدة التي تظهر في منطقة الطيف المرئي.

طيف الإنبعاث الخطي: مجموعة الأطوال الموجية للضوء الصادر عن ذرات العنصر المثارةعند عودة الإلكترون الى حالة الإستقرار.